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Multivariate utility maximization with

proportional transaction costs and random endowment

Giuseppe Benedetti∗ Luciano Campi†

April 15, 2011

Abstract

In this paper we deal with a utility maximization problem at finite horizon on a continuous-time market
with conical (and time varying) constraints (particularly suited to model a currency market with propor-
tional transaction costs). In particular, we extend the results in [CO10] to the situation where the agent
is initially endowed with a random and possibly unbounded quantity of assets. We start by studying some
basic properties of the value function (which is now defined on a space of random variables), then we dualize
the problem following some convex analysis techniques which have proven very useful in this field of research.
We finally prove the existence of a solution to the dual and (under an additional boundedness assumption
on the endowment) to the primal problem. The last section of the paper is devoted to an application of our
results to utility indifference pricing.

Key-words: Transaction costs, foreign exchange market, multivariate utility function, optimal portfolio,
duality theory, random endowment, utility-based pricing.
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1 Introduction

We place ourselves in the framework of a continuous-time market with proportional transaction costs as
described in [CO10] and in [CS06]. The agent’s objective is to maximize his utility at a fixed terminal
date T by trading in the available assets. The model is very general, as it allows the portfolio process
to be driven by any cone-valued process, provided it satisfies some regularity assumptions. In the most
common version of the model, the cones are generated by the evolution of bid-ask prices (which may
possibly have jumps) and therefore they describe market frictions due to transaction costs. Also in
this framework, the model preserves a great generality as the modeling of bid-ask prices does not pass
through asset prices and transaction costs dynamics separately. This approach, based on the key concept
of solvency cones, was first introduced in [Kab99] and it has been further developed by many authors
in the last decade (for more details, see the recent book [KS09] and the references therein).
The agent’s preferences are described by a multivariate utility function (see Section 2.2) supported on
R

d
+, reflecting the idea that the agent will not necessarily liquidate his positions to a single numeraire

at the final date (which is realistic, in particular, on a currency market). We also make the following
assumptions.

Assumption 1.1 The utility function U : R
d → [−∞,∞) satisfies the following conditions:

(i) U is measurable;

(ii) U is strictly concave on the interior of R
d
+;

(iii) U is essentially smooth and its gradient diverges at the boundary of R
d
+ (see Definition 2.5);

(iv) U is asymptotically satiable (see Definition 2.6).

∗CREST (Finance/Insurance Laboratory) and University Paris-Dauphine
†CEREMADE, University Paris-Dauphine.
The second author thanks the “Chair Les Particuliers Face aux Risques”, Fondation du Risque (Groupama-ENSAE-

Dauphine) and the “Chair Finance and Sustainable Development” sponsored by EDF for their support.

1



As in [Kam01], the utility function is then extended to D > d assets in order to model the investor’s
preferences towards a restricted set of assets in a larger economy. This is motivated by the fact that the
agent may be ultimately interested in consuming a small set of assets at the date T , but he will trade
in all available assets in order to reach his objective). Hence we define Ũ : R

D → [−∞,+∞) by

Ũ(x) =

{
U(x1, ..., xd), if x ∈ R

D
+ ;

−∞ otherwise.
(1.1)

In the formulation of [CO10] the investor is initially endowed with a deterministic amount x ∈ R
D of

different assets, while in this paper we extend those results by assuming that the initial endowment is
a random variable, that we call E := (E1, . . . , ED). For example the agent may have no assets at the
beginning but he may have access to some contingent claims on these assets (such as a right to buy or
to sell some of them at a future date).
The first systematic study of a utility maximization problem with a (bounded) random endowment in
a general frictionless semimartingale model is due to [CSW01], where the authors considered univariate
utility functions and used the duality approach based on some ideas already developed in [KrS99].
Important contributions in the same direction have later been given, among others, in [HG04] and [OZ09],
where the boundedness condition on the endowment is relaxed and replaced by weaker requirements
(those in [OZ09], in particular, have inspired the ones which are employed in this paper).
Duality methods in a utility maximization problem with transaction costs had been introduced for the
first time in [CK96] in a diffusion market model with one risky asset, constant proportional transaction
costs and no random endowment (for a more complete story we refer to the Introduction in [CO10]).
[Bou02] investigated an optimization problem for an agent with a bounded random endowment, using
the already mentioned idea of solvency cones introduced by Kabanov in a series of papers (see [KS09]
for a reference). This new modeling approach paved the way for the more general model in [CS06] (with
time varying and random proportional transaction costs), which in turn provided the necessary tools for
the results in [CO10], where multivariate utility functions are introduced in the optimization problem
(with deterministic endowment). We recall the paper [DPT01], where the topic of multivariate utility
maximization has been studied for the first time (in a constant transaction cost framework).
In the present paper we extend the results in [CO10] to the case of an agent equipped with a possibly
unbounded random endowment in a model where transaction costs are proportional, they can be random
and have jumps. Moreover, we will use our duality results to obtain some general results on utility
indifference pricing.
The subject of utility-based pricing of contingent claims has been an active (and quite natural) area of
research since the introduction and development of incomplete market models, in which the replication
paradigm is no longer sufficient to find a unique price (hence utility comes in as an additional criterion
of choice). The idea of utility indifference pricing has been first introduced in a dynamic hedging
framework by [HN89] and it has been further extended by other authors in different settings, possibly
under different names, see for example [Mu99] and [OZ09] (which is our main reference). In fact, the
underlying concept of certainty equivalent is quite pervasive in the whole economics literature, because
of its natural and intuitive interpretation. We refer to [HH09] for a more detailed overview on this
subject.
Before proceeding, Section 2 will give some details on the transaction cost model we work on, as well
as some preliminaries on the main mathematical tools that we are going to employ. The main results
on duality and existence of an optimizer are presented in Section 3, while in Section 4 we propose an
application to utility-based pricing of contingent claims.

2 Preliminaries

In this section we present all the preliminary concepts and notation which are required for the analysis
of the optimization problem.

2.1 Cones and transaction costs

A general and convenient description of a large class or market constraints and/or frictions can be
provided by a Kabanov-type market model, which is centered on the idea of cone-valued processes
(evolving in continuous time in our framework). Let (Ω, (Ft)t∈[0,T ], P) be a filtered probability space
satisfying the usual conditions and supporting all processes appearing in this paper. We will use the
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notation χA for the indicator function of a set A and cone(A) to denote the cone generated by any set
A in R

D.
A C-valued process is defined as a sequence of set-valued mappings K = (Kt)t∈[0,T ] specified by a

countable sequence of adapted R
D-valued processes Xn = (Xn

t ) such that, for all t and ω, only a finite
but nonzero number of Xt(ω) is different from zero and

Kt(ω) := cone{Xn
t (ω), n ∈ N}

which implies that Kt(ω) is a polyhedral cone (by the so-called Farkas-Minkowski-Weyl Theorem, see
e.g. Section 5.1 in the Appendix in [KS09]). The cones Kt− are the ones generated by the left limits of
the generators. As we shall see in a moment, these cones are there to describe the trading possibilities
of an investor over time, i.e. to model the evolution of the portfolio processes.
Let Ks,t(ω) denote the closure of cone{Kr(ω), s ≤ r < t}, and let

Ks,t+(ω) :=
⋂

ǫ>0

Ks,t+ǫ(ω), Ks−,t(ω) :=
⋂

ǫ>0

Ks−ǫ,t(ω).

In order to derive useful results one needs some regularity assumptions that we list here. Recall that a
cone K is proper if K ∩ (−K) = {0}.

Assumption 2.1 (i) The cones Kt and Kt− are proper and contain R
D
+ (Efficient friction)

(ii) Kt,t+ = Kt, Kt−,t = Kt− and Kt−,t+ = cone{Kt−, Kt} for all t.

Remark 2.1 It can be shown (see [KS09], p.165) that (ii) is verified if (i) is true and all cones Kt and
Kt− can be generated by a finite number of càdlàg vector processes.

Example 2.1 Even though all the results of this paper are true just under the above assumptions, we
give here an example of how cone processes can be constructed in a particular (but still quite general)
model of a market with transaction costs, which is the main situation we have in mind (and which justifies
the title of the paper). In such a model, formalized in [CS06] (see also [S04]), all agents can trade in D
assets according to a random and time varying bid-ask matrix. A D × D matrix Π = (πij)1≤i,j≤D is
called a bid-ask matrix if (i) πij > 0 for every 1 ≤ i, j ≤ D, (ii) πii = 1 for every 1 ≤ i ≤ D, and (iii)
πij ≤ πikπkj for every 1 ≤ i, j, k ≤ D.
Given a bid-ask matrix Π, the solvency cone K(Π) is defined as the convex polyhedral cone in R

D

spanned by the canonical basis vectors ei, 1 ≤ i ≤ D of R
D, and the vectors πijei − ej , 1 ≤ i, j ≤ D.

The convex cone −K(Π) should be interpreted as those portfolios available at price zero.
We must now introduce randomness and time in the model. An adapted, càdlàg process (Πt)t∈[0,T ]

taking values in the set of bid-ask matrices will be called a bid-ask process. Once a bid-ask process
(Πt)t∈[0,T ] has been fixed, one can drop it from the notation by writing Kτ instead of K(Πτ ) for a
stopping time τ , coherently with the framework introduced above. Under the hypothesis of efficient
friction (i), part (ii) of Assumption 2.1 is automatically satisfied in this case by Remark 2.1.

In accordance with the framework developed in [CS06] we make the following technical assumption
throughout the paper. The assumption is equivalent to disallowing a final trade at time T , but it can
be relaxed via a slight modification of the model (see [CS06, Remark 4.2]). For this reason, we shall not
explicitly mention the assumption anywhere.

Assumption 2.2 FT− = FT and ΠT− = ΠT a.s.

Given a cone K in R
D, its (positive) polar cone is defined by

K∗ =
{
w ∈ R

D : 〈v, w〉 ≥ 0,∀v ∈ K
}

.

Definition 2.1 An adapted, R
D
+ \ {0}-valued, càdlàg martingale Z = (Zt)t∈[0,T ] is called a consistent

price process for the C-valued process K if Zt ∈ K∗
t a.s. for every t ∈ [0, T ]. Moreover, Z will be called

a strictly consistent price process if Zt ∈ int(K∗
t ) and Zt− ∈ int(K∗

t−) a.s. for every t ∈ [0, T ]. The set
of all (strictly) consistent price processes will be denoted by Z (Zs).

The following assumption, which is used extensively in [CS06], will also hold throughout the paper.
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Assumption 2.3 (SCPS) Existence of a strictly consistent price system: Zs 6= ∅.

This assumption is intimately related to the absence of arbitrage (see also [JK95, GRS10, GK10,
DGR11]).

Definition 2.2 Suppose that K = (Kt)t∈[0,T ] is a C-valued process such that Assumption 2.3 holds
true. An R

D-valued process V = (Vt)t∈[0,T ] is called a self-financing portfolio process for the process K
if it satisfies the following properties:

(i) It is predictable and a.e. path has finite variation (not necessarily right-continuous).

(ii) For every pair of stopping times 0 ≤ σ ≤ τ ≤ T , we have

Vτ − Vσ ∈ −Kσ,τ

A self-financing portfolio process V is called admissible if it satisfies the additional property

(iii) There is a constant a > 0 such that VT + a1 ∈ KT a.s. and 〈Vτ + a1, Zs
τ 〉 ≥ 0 a.s. for all [0, T ]-

valued stopping times τ and for every strictly consistent price process Zs ∈ Zs. Here, 1 ∈ R
D

denotes the vector whose entries are all equal to 1.

Let Ax denote the set of all admissible, self-financing portfolio processes with initial endowment
x ∈ R

D, and let
Ax

T := {VT : V ∈ Ax}

be the set of all contingent claims attainable at time T with initial endowment x. Note that Ax
T = x+A0

T

for all x ∈ R
D.

For the convenience of the reader we present a reformulation of [CS06, Theorem 4.1].

Theorem 2.1 (Super-replication) Let x ∈ R
D and let X be an FT -measurable, R

D
+ -valued random

variable. Under Assumption 2.3 we have

X ∈ Ax
T if and only if E[〈X, Zs

T 〉] ≤ 〈x, Zs
0〉 for all Zs ∈ Zs.

This result will be used in particular in the proof of Theorem 3.2 to show that our candidate for
the optimizer in the utility maximization problem (with random endowment) is indeed an attainable
contingent claim, i.e. the terminal value of an admissible portfolio.

2.2 Convex analysis and utility functions

The material of this section is mostly taken from Sections 2.2 and 2.3 in [CO10], where all the proofs can
be found. We report here those results that we are going to use in our proofs for reader’s convenience.

Let (X , τ) be a locally convex topological vector space, and let X ∗ denote its dual space. Given
a set S ⊆ X we let cl(S), int(S), ri(S) and aff(S) denote respectively the closure, interior, relative
interior and affine hull of S. We shall say that a set C ⊆ X is a convex cone if λC + µC ⊆ C for all
λ, µ ≥ 0. Given set S ⊆ X , we denote its polar cone by

S∗ := {x∗ ∈ X
∗ : 〈x, x∗〉 ≥ 0 ∀x ∈ S} .

Note that S∗ is weak∗ closed. A convex cone C ⊆ X induces a preorder �C on X : We say that
x, x′ ∈ X satisfy x′ �C x if and only if x′ − x ∈ C. When we do not specify the cone in the notation,
we always mean that it is R

D
+ .

Definition 2.3 (Dual functionals) (i) If U : X → [−∞,∞) is proper concave then we define
its dual functional U

∗ : X ∗ → (−∞,∞] by

U
∗(x∗) := sup

x∈X

{U(x) − 〈x, x∗〉} . (2.1)

The dual functional U
∗ is a weak∗ lower semi-continuous, proper convex functional on X ∗. Note

that U
∗ = (cl(U))∗ (see e.g. [Z02, Theorem 2.3.1]).
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(ii) If V : X ∗ → (−∞,∞] is proper convex then we define the pre-dual functional ∗
V : X → [−∞,∞)

by
∗
V(x) := inf

x∗∈X ∗

{V(x∗) + 〈x, x∗〉} .

Similarly, ∗
V is a weakly† upper semi-continuous, proper concave functional.

We say that U is increasing with respect to a preorder � on X , if U(x′) ≥ U(x) for all x, x′ ∈ X

such that x′ � x.

Lemma 2.1 [CO10, Lemma 2.8] Let U : X → [−∞,∞) be proper concave. Then U
∗ is decreasing with

respect to the preorder induced by (dom(U))∗. Suppose furthermore that U is increasing with respect to
the preorder induced by some cone C. Then dom(U∗) ⊆ C∗.

Definition 2.4 (Utility function) We shall say that a proper concave function U : R
d → [−∞,∞)

is a (multivariate) utility function if

(i) CU := cl(dom(U)) is a convex cone which contains the non-negative orthant R
d
+; and

(ii) U is increasing with respect to the preorder induced by the closed convex cone CU .

We call CU the support (or support cone) of U , and say that U is supported on CU .

Throughout the whole paper the agent’s utility function U is assumed to be supported on R
d
+,

the extended utility function Ũ defined by (1.1) is therefore supported on R
D
+ . It is shown in [CO10]

(Proposition 3.1) that under Assumption 3.1 the value function ū is a utility function which is supported
on R

D∩(−A0
T ), a cone which is strictly larger than R

D
+ . It follows that ū is finite on I := int(RD∩(−A0

T )),
a fact that we will use later.

We now review the analogues of the well known “Inada conditions” for the case of a multivariate
utility function. For the proofs of the results, as well as for a more detailed discussion, we refer the
reader to [CO10].
The first condition, which we recall from [Roc72], is well known within the field of convex analysis.

Definition 2.5 A proper concave function U : R
d → [−∞,∞) is said to be essentially smooth if

(i) int(dom(U)) is non-empty;

(ii) U is differentiable throughout int(dom(U));

(iii) limi→∞ |∇U(xi)| = +∞ whenever x1, x2, . . . is a sequence in int(dom(U)) converging to a bound-
ary point of int(dom(U)).

A proper convex function V is said to be essentially smooth if −V is essentially smooth.

Lemma 2.2 [CO10, Lemma 2.12] Let U be a proper concave function which is essentially smooth and
strictly concave on int(dom(U)). Then U∗ is strictly convex on int(dom(U∗)), and essentially smooth.
Moreover, the maps ∇U : int(dom(U)) → int(dom(U∗)) and ∇U∗ : int(dom(U∗)) → − int(dom(U)) are
bijective and (∇U)−1 = −∇U∗.

The next condition was first introduced by [CO10] and it plays an important role in the paper.

Definition 2.6 We say that a utility function U is asymptotically satiable if for all ǫ > 0 there exists
an x ∈ R

d such that ∂(cl(U))(x) ∩ [0, ǫ)d 6= ∅.

Lemma 2.3 [CO10, Lemma 2.14] A sufficient condition for asymptotic satiability of U is that for all
ǫ > 0 there exists an x ∈ int(dom(U)) such that ∂U(x)∩ [0, ǫ)d 6= ∅. If U is closed, or essentially smooth
then the condition is both necessary and sufficient for asymptotic satiability.

The next proposition clarifies the effects of asymptotic satiability on the dual function.

†A concave functional is weakly upper semi-continuous if and only if it is upper semi-continuous with respect to the
original topology τ
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Proposition 2.1 [CO10, Proposition 2.15] Let U be a utility function. The following conditions are
equivalent:

(i) U is asymptotically satiable;

(ii) 0 ∈ cl(dom(U∗));

(iii) cl(dom(U∗)) = (CU )∗; and

(iv) cl(dom(U∗)) is a convex cone.

If U is asymptotically satiable then we define the closed convex cone CU∗ := cl(dom(U∗)), so that
condition (iii) can be written more succinctly as CU∗ = (CU )∗.

We note that for a utility function U supported on R
D
+ , the previous proposition states that if U is

asymptotically satiable then cl(dom(U∗)) = R
D
+ .

Corollary 2.1 [CO10, Corollary 2.16] Let U : R
d → [−∞,∞) be a utility function which is supported

on R
d
+, and which satisfies Assumption 1.1. Recall that by definition of the dual function we have

U∗(x∗) ≥ U(x) − 〈x, x∗〉 (2.2)

for all x, x∗ ∈ R
d. If x∗ ∈ int(Rd

+) then we have equality in (2.2) if and only if x = I(x∗) := −∇U∗(x∗).

Given D ≥ d, define Ũ : R
D → [−∞,∞) by (1.1). Again, by definition of the dual function we have

Ũ∗(x∗) ≥ Ũ(x) − 〈x, x∗〉 , (2.3)

for all x, x∗ ∈ R
D. Define P : R

D → R
d by

P (x1, . . . , xd, xd+1, . . . , xD) := (x1, . . . , xd), (2.4)

and Ĩ : int(Rd
+) × R

D−d
+ → int(Rd

+) × R
D−d
+ by

Ĩ(x∗) := (−∇U∗(P (x∗)), 0), (2.5)

where 0 denotes the zero vector in R
D−d. Then, (i) if x∗ ∈ int(Rd

+) × R
D−d
+ then we have equality in

(2.3) whenever x = Ĩ(x∗) and (ii) if x∗ ∈ int(RD
+) then there is equality in (2.3) if and only if x = Ĩ(x∗).

2.3 Euclidean vector measures

A function m from a field F of subsets of a set Ω to a Banach space X is called a finitely additive vector
measure, or simply a vector measure if m(A1 ∪A2) = m(A1) + m(A2), whenever A1 and A2 are disjoint
members of F . In this paper, we will be concerned with the special case where X = R

D; we refer to
the associated vector measure as a “Euclidean vector measure”, or simply a “Euclidean measure”. Let
us recall a few definitions from the classical, one-dimensional setting. The total variation of a (finitely
additive) measure m : F → R is the function |m| : F → [0,∞] defined by

|m|(A) := sup
n∑

j=1

|m(Aj)|,

where the supremum is taken over all finite sequences (Aj)
n
j=1 of disjoint sets in F with Aj ⊆ A. A

measure m is said to have bounded total variation if |m|(Ω) < ∞. A measure m is said to be bounded
if sup {|m(A)| : A ∈ F} < ∞. A measure m is said to be purely finitely additive if 0 ≤ µ ≤ |m| and µ
is countably additive imply that µ = 0. A measure m is said to be weakly absolutely continuous with
respect to P if m(A) = 0 whenever A ∈ F and P(A) = 0.

We turn now to the D-dimensional case. A Euclidean measure m can be decomposed into its one-
dimensional coordinate measures mi : F → R by defining mi(A) :=

〈
ei, m(A)

〉
, where ei is the i-th

canonical basis vector of R
D. In this way, m(A) = (m1(A), . . . ,mD(A)) for every A ∈ F . We shall say

that a Euclidean measure m is bounded, purely finitely additive or weakly absolutely continuous with
respect to P if each of its coordinate measures is bounded, purely finitely additive or weakly absolutely
continuous with respect to P.
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We denote ba(RD) = ba(Ω,FT , P; RD) the vector space of bounded Euclidean measures m : FT →
R

D which are weakly absolutely continuous with respect to P, and ca(RD) the subspace of countably
additive members of ba(RD). Equipped with the norm

‖m‖ba(RD) :=

D∑

i=1

|mi|(Ω),

the spaces ba(RD) and ca(RD) are Banach spaces.
Let ba(RD

+) denote the convex cone of R
D
+ -valued measures within ba(RD). The next proposition is

an immediate extension of its univariate counterpart.

Proposition 2.2 Given any m ∈ ba(RD) there exists a unique Yosida-Hewitt decomposition m =
mc + mp where mc ∈ ca(RD) and mp is purely finitely additive. If m ∈ ba(RD

+) then mc, mp ∈ ba(RD
+).

It is well known that L∞(RD)∗, the set of linear functionals on the space of (essentially) bounded
R

D-valued random variables, can be identified with ba(RD). Another standard result in functional
analysis is that (ba(RD), ‖.‖ba(RD)) has a σ(ba(RD), L∞(RD))-compact unit ball. For any m ∈ ba(RD)
we will denote

m(X) :=

∫

Ω

〈X, dm〉 :=

D∑

i=1

∫

Ω

Xidmi.

Given x ∈ R
D and A ∈ FT we clearly have m(xχA) = 〈x, m(A)〉. In the special case where A = Ω,

we have m(x) = 〈x, m(Ω)〉.
Let L0(RD

+) and L∞(RD
+) denote respectively the convex cones of random variables in L0(RD) and

L∞(RD) which are R
D
+ -valued a.s. Note that if m ∈ ba(RD

+) and X ∈ L∞(RD
+) then m(X) ≥ 0 (see

[RR83, Theorem 4.4.13]). This observation allows us to extend the definition of m(X) to cover the case
where m ∈ ba(RD

+) and X ∈ L0(RD
+) (not necessarily bounded from above) by setting

m(X) := sup
n∈N

m (X ∧ (n1)) , (2.6)

where (x1, . . . , xD)∧ (y1, . . . , yD) := (x1 ∧ y1, . . . , xD ∧ yD). It is trivial that (2.6) is consistent with the
definition of m(X) for X ∈ L∞(RD). Furthermore, the supremum in (2.6) can be replaced by a limit,
since the sequence of numbers is increasing. It follows that given m1, m2 ∈ ba(RD

+), λ1, λ2, µ1, µ2 ≥ 0
and X1, X2 ∈ L0(RD

+), we have

(λ1m1 + λ2m2)(µ1X1 + µ2X2) = λ1µ1m1(X1) + λ1µ2m1(X2) + λ2µ1m2(X1) + λ2µ2m2(X2).

Given m ∈ ca(RD) and X ∈ L∞(RD) we have m(X) = E
[〈

X, dm
dP

〉]
, where dm

dP
is the vector of

Radon-Nikodym derivatives. It is easy to show that this property is also true under the extended
definition (2.6).
More details on finitely additive measures (which are sometimes referred to as charges) can be found in
[RR83].

3 Utility maximization problem with random endowment

In this section we will elaborate on the main optimization problem that was defined in (3.2), with a
particular focus on the issue of existence of a solution. We start by investigating some useful properties
of the value function in Proposition 3.1. We then proceed by dualizing the problem in Section 3.1, using
some convex duality techniques that are commonly used in optimization (see, for example, [Bou02],
[OZ09], [CO10] among others). Lemma 3.1 will give another convenient representation of the dual
functional, while Theorem 3.1 will establish the absence of duality gap and the existence of a solution to
the dual problem under some rather weak conditions on E (see condition (3.1) below). Finally, in Section
3.2, we show the existence of a solution to the primal problem in Theorem 3.2 under the additional
assumptions of asymptotic satiability of the value function and boundedness of the endowment.

For technical reasons that will be clear later in the proofs, we will mainly consider endowments of
this form: E ∈ L0(RD,FT ) and there exist x′, x′′ ∈ I := int(−A0

T ∩ R
D) and X ′′ ∈ A0

T such that

x′ � E � x′′ + X ′′. (3.1)
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We call O the convex set of endowments satisfying (3.1) for some x′, x′′ ∈ I and X ′′.
For any E ∈ O we define the primal optimization problem as

u(E) := sup
{

E

[
Ũ(X + E)

]
: X ∈ A0

T

}
. (3.2)

When E = x is deterministic, this reduces to the formulation in [CO10]:

ū(x) := sup
{

E

[
Ũ(X)

]
: X ∈ Ax

T

}
.

We denote dom(u) := {E ∈ L0(RD) : u(E) > −∞} and Ã0
T :=

{
X ∈ A0

T : ∃ǫ > 0 : X + ǫ1 ∈ A0
T

}
. The

set Ã0
T is clearly not empty as it contains the constants in the (strictly) negative orthant. The following

mild assumption is fairly natural in any optimization problem (compare [CO10, Assumption 1.2]).

Assumption 3.1 ū(x) < +∞ for some x ∈ int(dom(ū)).

Under this assumption, we can rephrase condition (3.1) as follows: x′ � E � x′′ +X ′′ for some initial
portfolios x′, x′′ in int(dom ū) and some final portfolio X ′′ ∈ A0

T . Indeed, it has been established in
[CO10, Proposition 3.1] that, under Assumption 3.1, one has cl(dom ū) = −A0

T ∩ R
D.

Remark 3.1 Take any E ∈ O. Notice that u(E − ǫ1) ≥ E

[
Ũ(X + E − ǫ1)

]
≥ E

[
Ũ(X + x′ − ǫ1)

]
for

all X ∈ A0
T , so that u(E − ǫ1) ≥ ū(x′ − ǫ1) > −∞ for some ǫ > 0 since x′ ∈ I. This simple observation

will be used in the proof of the following proposition.

Proposition 3.1 The value function u : L0(RD) → [−∞,∞] has the following properties:

(i) u is concave on O and increasing with respect to L0(RD
+).

(ii) u(E) ∈ R for any E ∈ O, so that in particular O ⊆ dom(u) ;

(iii) u(E) < ∞ for any E ∈ O ∩ L∞(RD);

(iv) cl(dom(u)) = − cl(A0
T ) in the topology of convergence in probability;

(v) u is increasing w.r.t. the preorder generated by dom(u). If U is l.s.c. then u is also increasing
w.r.t. the preorder generated by cl(dom(u)).

Proof. (i) Concavity follows from the fact that A0
T is convex and Ũ is concave. The second property

follows from the same property for U .

(ii) Observe that u(E) ≥ E

[
Ũ(X + E)

]
≥ E

[
Ũ(X + x′)

]
for all X ∈ A0

T , so that u(E) ≥ u(x′) > −∞

since x′ ∈ I ⊆ int(dom(ū)), where we recall that ū is the restriction of the value function u on R
D.

Also note that u(E) ≤ E

[
Ũ(X + x′ + X ′′)

]
≤ ū(x′′) < ∞ whenever x′′ ∈ I (See Section 2.2). Hence

u(E) ∈ R.
(iii) We show that u(E) < ∞ for any E ∈ O ∩ L∞. Suppose for a contradiction that there exists

some Ẽ ∈ L∞ such that u(Ẽ) = ∞. Let E ∈ O, so that u(E) < ∞. We can find an a > 0 such that
E1 := E + a1 � Ẽ a.s.. We have u(E1) ≥ u(Ẽ) = ∞.
By Remark 3.1 there exists an ǫ > 0 such that E0 := E − ǫ1 ∈ dom(u), so that u(E0) > −∞. We
also have u(E0) ≤ u(E) < ∞, hence u(E0) ∈ R. This implies that we may find an X0 ∈ A0

T such that

E

[
Ũ(X0 + E0)

]
=: c ∈ R. Since u(E1) = ∞, given any R ∈ R we may also find an X1 ∈ A0

T such that

E

[
Ũ(X1 + E1)

]
≥ R. Define λ := ǫ/(a + ǫ) and X := (1 − λ)X0 + λX1. So we have

u(E) ≥ E

[
Ũ(X + E)

]
= E

[
Ũ((1 − λ)(X0 + E0) + λ(X1 + E1))

]

≥ (1 − λ)E
[
Ũ(X0 + E0)

]
+ λE

[
Ũ(X1 + E1)

]
≥ (1 − λ)c + λR

which is a contradiction since R can be taken arbitrarily large.
(iv) Take X0 ∈ Ã0

T . There exists ǫ > 0 such that X0 + ǫ1 ∈ A0
T , then

u(−X0) ≥ E

[
Ũ(ǫ1)

]
> −∞
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hence −X0 ∈ dom(u), so −Ã0
T ⊆ dom(u).

Suppose that E ∈ dom(u). Necessarily then AE
T ∩ L0(RD

+) 6= ∅, where AE
T := E + A0

T = {Y ∈ L0 : Y =
X + E , X ∈ A0

T } . Take X ∈ AE
T ∩ L0(RD

+), then 0 = X − X ∈ AE
T − L0(RD

+) ⊆ AE
T , hence 0 ∈ AE

T ,
which implies E ∈ −A0

T . So
−Ã0

T ⊆ dom(u) ⊆ −A0
T

and the claim follows from cl(−Ã0
T ) = cl(−A0

T ). To see the last equality, remark first that cl(Ã0
T ) ⊆

cl(A0
T ). Now take X ∈ cl(A0

T ), then (up to a subsequence) there exists (Xn)n≥0 ∈ A0
T such that

Xn → X almost surely. Let (ǫn)n≥0 > 0 be such that ǫn → 0 and remark that Yn := Xn − ǫn1 belongs

to Ã0
T and Yn → X almost surely. Hence Yn → X in probability yielding X ∈ cl(Ã0

T ).
(v) We only prove the second part of the claim. Take E ∈ L0(RD) such that u(E) < ∞ and

E1 ∈ cl(dom(u)), so by property (iv) there exists (Yn)n≥0 ∈ A0
T such that Yn → −E1 almost surely (up

to a subsequence). By definition, for any ǫ > 0 there exists a X ∈ A0
T such that E

[
Ũ(X + E)

]
≥ u(E)−ǫ.

Since X + Yn ∈ A0
T we have that u(E + E1) ≥ E

[
Ũ(X + Yn + E + E1)

]
for all n ∈ N, hence

u(E + E1) ≥ lim inf
n

E

[
Ũ(X + Yn + E + E1)

]
≥ E

[
lim inf

n
Ũ(X + Yn + E + E1)

]

≥ E

[
Ũ(X + E)

]
≥ u(E) − ǫ

where we used the fact that Ũ is l.s.c. Since ǫ is arbitrary the claim follows.

If u(E) = ∞, then we can find an X ∈ A0
T such that E

[
Ũ(X + E)

]
≥ R for any R > 0. With the same

arguments as above we can say that u(E + E1) ≥ R, hence u(E + E1) = u(E) = ∞. �

3.1 Dual representation of the optimization problem

In this section we show that the value function of our optimization problem with random endowment
can be represented as the value function of a suitably defined dual minimization problem. To do so, let
us define the functional

UE(X) := E

[
Ũ(X + E)

]

and its dual
U

∗
E(m) := sup

X∈L∞(RD)

[UE(X) − m(X)]. (3.3)

Lemma 3.1 If E ∈ O then we have the following representation:

U
∗
E(m) =

{
E

[
Ũ∗
(

dmc

dP

)]
+ m(E) if m ∈ ba(RD

+)

∞ otherwise
(3.4)

Proof. Remark first that since U0 is increasing with respect to the preorder induced by L∞(RD
+) it

follows from Lemma 2.1 that dom(U∗
0) ⊆ L∞(RD

+)∗ = ba(RD
+).

Now take m ∈ ba(RD
+) and define

UE,n(X) := E

[
Ũ(X + EχE�1n)

]
.

It is clear that by monotone convergence one has

lim
n→∞

UE,n(X) = sup
n

UE,n(X) = UE(X)
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Thus we get

U
∗
E(m) = sup

X∈L∞(RD)

[UE(X) − m(X)]

= sup
X∈L∞(RD)

sup
n

[UE,n(X) − m(X)]

= sup
n

sup
X∈L∞(RD)

[UE,n(X) − m(X)]

= lim
n→∞

sup
X∈L∞(RD)

[U0(X + Eχ(E�n1)) − m(X + Eχ(E�n1))] + m(EχE�1n)

= lim
n→∞

sup
X̃∈L∞(RD)

[U0(X̃) − m(X̃)] + m(EχE�1n)

= U
∗
0(m) + lim

n→∞
m(EχE�1n)

= U
∗
0(m) + m(E).

Now that we have isolated the contribution of the random endowment, it suffices to study the case of
zero endowment to conclude the proof. This has already been done in [CO10], where it is shown that

U
∗
0(m) = U

∗
0(m

c) = E

[
Ũ∗
(

dmc

dP

)]
, which yields the claim. �

Remark 3.2 A consequence of previous Lemma 3.1 is that if E ∈ O then dom(U∗
E) = dom(U∗

0). Mea-
sures in this set are sometimes said to have finite relative entropy (see, for example, [OZ09]).

Consider now the abstract maximization problem

sup
X∈C

UE(X)

where
C := L∞(RD) ∩ A0

T .

It is immediately clear that
sup
X∈C

UE(X) ≤ u(E).

Its abstract dual problem is defined as
inf

m∈D
U

∗
E(m)

where U
∗
E is defined as in (3.3) and

D :=
{
m ∈ ba(RD) : m(X) ≤ 0 for all X ∈ C

}
.

Since −L∞(RD
+) ⊆ C, one clearly has D ⊆ ba(RD

+). We introduce the Lagrangian L(X, m) := UE(X) −
m(X) and note that

sup
X∈C

UE(X) ≤ sup
X∈L∞

inf
m∈D

L(X, m) ≤ inf
m∈D

sup
X∈L∞

L(X, m) = inf
m∈D

U
∗
E(m). (3.5)

Remark 3.3 It is important to notice that, given any Z ∈ Zs we can construct a corresponding
m ∈ ca(RD

+) by setting m(A) := E [ZT 1A] for each A ∈ FT . We call mZ the measure associated to the
price process Z. We have that

Zs ⊆ D ∩ ca(RD
+) ⊆ Z.

To see that, begin with the first inclusion (that was already established in [CO10, Remark 3.10]) : Take
Z ∈ Zs and X ∈ C. Then E [〈X, ZT 〉] = mZ(X) ≤ 0 by Theorem 2.1, where mZ ∈ ca(RD

+).
For the second inclusion, take m ∈ D ∩ ca(RD

+), so that m(X) ≤ 0 for any X ∈ C. Take any X ∈
L∞(−Kt,Ft) for some t, then X ∈ A0

T (consider the strategy that just trades at time t for an amount
equal to X). So X ∈ C and then m(X) ≤ 0, which implies Zm

t := E
[

dm
dP

|Ft

]
∈ K∗

t a.s. and so Zm ∈ Z.
By monotone convergence, this is also true for unbounded X.

Define

P := {m ∈ ba(RD
+) : P

(
dmc

dP

)
is int(Rd

+) − valued a.s.}

where P is defined in Corollary 2.1.
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Lemma 3.2 Suppose that m̂ is a minimizer for the problem infm∈D U
∗
E(m). Then m̂ ∈ P. If the utility

function U is strictly concave then the minimizer is unique.

Proof. We will use the same arguments as in [CO10], Proposition 3.9, with minor modifications. How-
ever, we will give the details of the proof for reader’s convenience.
By Lemma 3.1, m̂ ∈ ba(RD

+). Suppose that m̂ /∈ P. By definition some of the components of d bmc

dP
are

zero on a set A ∈ F with positive probability. Take Z ∈ Zs and let mZ be its associated measure as in

Remark 3.3. For λ > 0 let mλ := λmZ + m̂ ∈ D and νλ := Ũ∗
(

dmc
λ

dP

)
. By Lemma 2.1, U

∗
0 is decreasing

with respect to the preorder induced by ba(RD
+), implying that mλ ∈ dom(U∗

0). Since νλ is convex
as a function of λ, the integrable random variables (νλ − ν0)/λ are monotone increasing in λ. By the
monotone convergence theorem,

lim
λ→0

E

[
χA

(
νλ − ν0

λ

)]
= E

[
χA lim

λ→0

(
νλ − ν0

λ

)]

= E



χA lim
λ→0




Ũ∗
(
λdmZ

dP
+ d bmc

dP

)
− Ũ∗

(
dm̃c

dP

)

λ









= E



χA lim
λ→0




U∗
(
λP (dmZ

dP
) + P (d bmc

dP
)
)
− U∗

(
P (dm̃c

dP
)
)

λ







 = −∞

since, being U∗ essentially smooth (by Lemma 2.2), its gradient diverges on the boundary points of
its domain. Hence limλ→0

1
λ
E [νλ − ν0] = −∞. By Lemma 3.1, the optimality of m̂, the assump-

tions on the endowment and Theorem 2.1 we have that E [νλ − ν0] = U
∗
E(mλ) − mλ(E) − U

∗
E(m̂) +

m̂(E) ≥ −λmZ(E) ≥ −λmZ(x′′ + X ′′) ≥ −λmZ(x′′) = −λ 〈x′′, E [ZT ]〉 = −λ 〈x′′, Z0〉 > −∞, therefore
1
λ
E [νλ − ν0] ≥ 〈x′′, Z0〉 > −∞ and so the limit as λ → 0 cannot be −∞, which is a contradiction.

Uniqueness follows easily from strict convexity of the dual function. �

Motivated by Lemma 3.1, we define

v(E) := inf
m∈D

{
E

[
Ũ∗

(
dmc

dP

)]
+ m(E)

}

Take X ∈ C and m ∈ D. We can consider in what follows that X + E ∈ L0(RD
+) otherwise the results

are trivial. We have

m(X + E) = sup
n

m ((X + E) ∧ 1n) ≤ sup
n

m (X ∧ 1n) + sup
n

m (E ∧ 1n)

= m (X) + m(E) ≤ m(E).

We also remark that

m(X + E) ≥ mc(X + E) = E

[〈
X + E ,

dmc

dP

〉]
.

By combining these considerations and using the definition of the dual function we get

E

[
Ũ(X + E)

]
≤ E

[
Ũ∗

(
dmc

dP

)
+

〈
dmc

dP
, X + E

〉]

≤ E

[
Ũ∗

(
dmc

dP

)]
+ m(E).

(3.6)

After all these preliminaries, we can finally prove the existence result.

Theorem 3.1 If E ∈ O then

sup
X∈C

UE(X) = u(E) = v(E) = min
m∈D

U
∗
E(m) < ∞. (3.7)

If the utility function is strictly concave, then the minimizer is unique.
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Proof. The proof can be split into two parts.
1. We first use the Lagrange duality theorem as reported in the Appendix of [CO10] to show

that supX∈C UE(X) = v(E) = minm∈D U
∗
E(m) < ∞. Take E ∈ O, let X = L∞(RD) and define the

concave functional U : X → [−∞,∞) by U = UE . By Remark 3.1 there exists ǫ > 0 such that
−Y := E − 3ǫ1 ∈ dom(u) = − cl(A0

T ). Suppose first that Y ∈ A0
T , so by using [KS09, Lemma 3.6.7] we

can find a sequence Yn ∈ C ⊆ −dom(u) such that Yn → Y .
By definition p := −1ǫ belongs to the interior of C (with the norm of L∞), and we can assume that

Yn � 2ǫ1 − E for n sufficiently large. Hence U(p + Yn) = U(−1ǫ + Yn) ≥ E

[
Ũ(1ǫ)

]
> −∞ if n is

sufficently large. By property (ii) in Proposition 3.1 we have

sup
X∈C

U(X) ≤ u(E) < ∞

This verifies the hypotheses of part 1 of Theorem A.1 in [CO10], hence the claim follows.
If we have instead Y ∈ cl(A0

T ) then there exists Ỹ k ∈ A0
T such that Ỹ k → Y a.s. (up to a

subsequence) and for each Ỹ k we can find a sequence Ỹ k
n ∈ C such that Ỹ k

n → Ỹ k. Then by the same

arguments as above we have U(p + Y k
n ) ≥ E

[
Ũ(1ǫ)

]
> −∞ for n and k sufficently large.

2. It remains to show that
sup
X∈C

UE(X) = u(E)

Clearly supX∈C UE(X) ≤ u(E). To show the other inequality, take a sequence Xn ∈ A0
T such that

UE(Xn) → u(E). By step 1, there exists Y ∈ C such that Y + E � 1ǫ, so we can assume w.l.o.g. that
Xn + E ∈ int(RD

+) for all n. For any ǫ > 0 we can find n0 such that UE(Xn) ≥ u(E) − ǫ for all n ≥ n0.
By [KS09, Lemma 3.6.7], the set C = A0

T ∩L∞ is Fatou-dense in A0
T .‡ Thus, for any Xn ∈ A0

T there is a
sequence Xk

n ∈ C such that Xk
n → Xn, and since U is continuous on int(RD

+) by [Roc72] Theorem 10.1,
we can find k0 such that UE(Xk

n) ≥ UE(Xn) − ǫ for any k ≥ k0. This implies that UE(Xk
n) ≥ u(E) − 2ǫ

when n and k are sufficiently large. Since ǫ is arbitrary we finally get the opposite inequality by letting
n and k tend to infinity.
Uniqueness follows easily by strict concavity of the utility function. �

Take E ∈ O and let m̂ be the corresponding minimizer in the abstract dual problem above, so that

v(E) = E

[
Ũ∗

(
dm̂c

dP

)]
+ m̂(E) ∈ R.

For x ∈ R
D
+ , define

D(x) := {m ∈ D, m(Ω) = x}.

Take x ∈ R
D
+ and m ∈ D(x), then

m(E) = lim
n

m(Eχ(E�n1)) ≤ 〈x, x′′〉 < ∞

hence if m ∈ dom(U∗
0) then

U
∗
E(m) = E

[
Ũ∗

(
dmc

dP

)]
+ m(E) < ∞.

Define

vE(x) := inf
m∈D(x)

{
E

[
Ũ∗

(
dmc

dP

)]
+ m(E)

}
. (3.8)

‡We recall that a sequence of R
D-valued random variables Xn is Fatou-convergent to X if Xn → X a.s. and Xn +a1 ∈

L0(KT ,FT ) for some a. A set A0 is said to be Fatou-dense in A if any element of A is a limit of a Fatou-convergent
sequence of elements from A0.
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We define, for x ∈ R
D
+ , uE(x) := u(E + x). Hence we have§

uE(x) = vE+x = min
m∈D∩dom(U∗

0
)

{
E

[
Ũ∗

(
dmc

dP

)]
+ m(E + x)

}

= inf
y∈RD

+

inf
m∈D(y)∩dom(U∗

0
)

{
E

[
Ũ∗

(
dmc

dP

)]
+ m(E) + 〈x, y〉

}

= min
y∈RD

+

{vE(y) + 〈x, y〉}

where the second equality is due to the fact that dom U
∗
0 = dom U

∗
E whenever E ∈ O (see Remark 3.2).

A consequence, vE(y) is the convex conjugate of uE(x), which implies u∗
E(y) = vE(y).

Lemma 3.3 The infimum in (3.8) is attained whenever vE(x) is finite.

Proof. Set L∞ = L∞(RD) and ba = ba(RD) for the sake of simplicity. Take x ∈ R
D
+ such that

vE(x) is finite. We first show that D(x) is σ(ba, L∞)-compact. To see this, remark first that the set
D is σ(ba, L∞)-closed: for any sequence (µn)n≥0 ⊆ D such that µn → µ in σ(ba, L∞) we also have
µ(X) = limn µn(X) ≤ 0 for any X ∈ C. To show closedness of D(x) take (µn)n≥0 ⊆ D(x) such that
µn → µ in σ(ba, L∞), then µ(Ω) = limn µn(Ω) = x and µ ∈ D(x). The set D(x) only contains positive
measures, for which ‖µ‖ ≤ µ(Ω), hence it can be seen as a closed subset of the σ(ba, L∞)-compact ball
{µ ∈ ba : ‖µ‖ ≤ x}. Hence D(x) is σ(ba, L∞)-compact.

It follows from basic properties of dual functions that U
∗
E(m) is σ(ba, L∞)-lower semicontinuous

(being the supremum of a sequence of affine functions). Then if (µn)n≥0 ⊆ D(x) is a minimizing
sequence in (3.8), we can extract a subsequence µnk

converging to µ in σ(ba, L∞) as k → ∞ and we
have U

∗
E(µ) ≤ lim infk U

∗
E(µnk

) = infm∈D(x) U
∗
E(m). Hence U

∗
E(µ) = infm∈D(x) U

∗
E(m) and µ attains the

infimum in (3.8). �

3.2 Existence of the optimizer

Let E ∈ O. We now show that vE : R
D
+ → R is a proper convex function. It is clearly proper by

Proposition 3.1 (ii) and Lemma 3.1. Now, we turn to convexity. Let m1 and m2 be the minimizers in
vE(x1) and vE(x2) and let x = (1 − λ)x1 + λx2, m = (1 − λ)m1 + λm2 ∈ D(x) ∩ dom(U∗

0). We have

(1 − λ)vE(x1) + λvE(x2)

= (1 − λ)

{
E

[
Ũ∗

(
dmc

1

dP

)]
+ m1(E)

}
+ λ

{
E

[
Ũ∗

(
dmc

2

dP

)]
+ m2(E)

}

= E

[
(1 − λ)Ũ∗

(
dmc

1

dP

)
+ λŨ∗

(
dmc

2

dP

)]
+ (1 − λ)m1(E) + λm2(E)

≥ E

[
Ũ∗

(
(1 − λ)

dmc
1

dP
+ λ

dmc
2

dP

)]
+ (1 − λ)m1(E) + λm2(E)

= E

[
Ũ∗

(
dmc

dP

)]
+ m(E) ≥ vE(x).

Consider any m ∈ D ∩ dom(U∗
0) and mλ := λm + (1 − λ)m̂ ∈ D ∩ dom(U∗

0) for λ ∈ [0, 1]. The function

h(λ) = E

[
Ũ∗

(
dmc

λ

dP

)]
+ mλ(E)

§Let x ∈ R
D

+
. Notice that, since R

D

+
⊆ I := int(−A0

T
∩ R

D), one has that x + x′ ∈ I whenever x′ ∈ I. This implies

that if E ∈ O and x ∈ R
D

+
, then x + E belongs to O and the duality representation (3.7) can be applied to x + E as well.
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is convex and has a minimum at zero, therefore by monotone convergence one has

0 ≤ h′
+(0) = lim

λ↓0

h(λ) − h(0)

λ

= lim
λ↓0




E




Ũ∗
(

dmc
λ

dP

)
− Ũ∗

(
d bmc

dP

)

λ



+
mλ(E) − m̂(E)

λ






= E



lim
λ↓0

Ũ∗
(

dmc
λ

dP

)
− Ũ∗

(
d bmc

dP

)

λ



+ m(E) − m̂(E)

= E

[〈
−Ĩ

(
dm̂c

dP

)
,
dmc

dP
−

dm̂c

dP

〉]
+ m(E) − m̂(E)

so that

E

[〈
Ĩ

(
dm̂c

dP

)
,
dmc

dP

〉]
− m(E) ≤ E

[〈
Ĩ

(
dm̂c

dP

)
,
dm̂c

dP

〉]
− m̂(E).

Since U
∗
0 is decreasing with respect to the preorder induced by ba(RD

+), if we take any m̃ ∈ D we have
that m := m̂ + m̃ ∈ D ∩ dom(U∗

0). It follows that

E

[〈
Ĩ

(
dm̂c

dP

)
,
dm̃c

dP

〉]
≤ m̃(E). (3.9)

At this point, we would like to prove that we have equality in (3.9) when m̃ = m̂. To do so, we need
to impose an additional property to the value uE(·) which is the asymptotic satiability.

Assumption 3.2 Let E ∈ O ∩ L∞(RD
+). The function uE : R

D
+ → R is asymptotically satiable.

Since uE(·) is asymptotically satiable, by Proposition 2.1 if E ∈ L∞ there exists a y ∈ dom(u∗
E)

such that ‖E‖∞‖y‖1 ≤ ǫ for any ǫ > 0, where ‖y‖1 =
∑D

i=1 |yi|. Also, by duality, there must exist an
m ∈ D(y) ∩ dom(U∗

0). Clearly m(E) ≤ ‖m‖ba(RD)‖E‖∞ ≤ ǫ so that

−ǫ ≤ −m(E) ≤ E

[〈
Ĩ

(
dm̂c

dP

)
,
dmc

dP

〉]
− m(E)

≤ E

[〈
Ĩ

(
dm̂c

dP

)
,
dm̂c

dP

〉]
− m̂(E) ≤ 0

and, being ǫ arbitrary, this implies

E

[〈
Ĩ

(
dm̂c

dP

)
,
dm̂c

dP

〉]
= m̂(E). (3.10)

Inequalities (3.9) and equality (3.10) allow us to prove the existence of the optimizer for the original
maximization problem with random endowment E ∈ O, under the additional assumption that E is
bounded.

Theorem 3.2 Let U : R
d → [−∞,∞) be a utility function supported on R

d
+. Given any E ∈ O ∩ L∞,

if the value function verifies Assumption (3.2) then the optimal investment problem (3.2) has a unique

solution X̂ := Ĩ
(

d bmc

dP

)
− E, where m̂ is any optimizer in the dual problem.

Proof. Take any Z ∈ Zs and let mZ ∈ D be its corresponding measure as in Remark 3.3. It follows

from (3.9) that E

[〈
X̂ + E , ZT

〉]
= E

[〈
Ĩ
(

d bmc

dP

)
, dmZ

dP

〉]
≤ mZ(E), hence E

[〈
X̂, dmZ

dP

〉]
≤ 0. It now

follows from Theorem 2.1 that X̂ ∈ A0
T . Hence by using (3.10) we can write

E

[
Ũ(X̂ + E)

]
= E

[
Ũ

(
Ĩ

(
dm̂c

dP

))]
= E

[
Ũ∗

(
dm̂c

dP

)]
+ E

[〈
Ĩ

(
dm̂c

dP

)
,
dm̂c

dP

〉]

= E

[
Ũ∗

(
dm̂c

dP

)]
+ m̂(E) = U

∗
E(m̂).

It is now easy to conclude by using Theorem 3.1. Uniqueness follows by the same arguments used in
[CO10, Theorem 3.12]. �
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Remark 3.4 It is important to stress that the boundedness assumption on the random endowment E is
needed only to prove the existence of the optimal portfolio, while to obtain the duality characterization
and the existence of the minimizer in the dual problem it suffices to require the weaker property E ∈ O,
i.e. the random endowment can be unbounded from above.

3.3 Sufficient conditions for existence and liquidation

We can now give some conditions which ensure asymptotic satiability of uE(x). In order to check them
easily, it is useful, in general, to look for conditions that only concern the utility function U (or possibly
its dual). We start by defining a growth condition in the version of [CO10] (even if similar conditions
have appeared in different papers, for example in [DPT01]).

Definition 3.1 Let U : R
d → [−∞,∞) be a utility function. We shall say that the dual function U∗

satisfies the growth condition if there exists a function ζ : (0, 1] → [0,∞) such that for all ǫ ∈ (0, 1] and
all x∗ ∈ int(Rd

+)
U∗(ǫx∗) ≤ ζ(ǫ)(U∗(x∗)+ + 1). (3.11)

The following result is the analogue of [CO10, Corollary 3.7]. The proof is essentially the same with
some minor modifications. Nonetheless, we decided to give the details for reader’s convenience.

Lemma 3.4 Take E ∈ O ∩ L∞(RD). If U∗ satisfies the growth condition (3.11) then both U and uE(·)
are asymptotically satiable.

Proof. Take m ∈ D∩dom(U∗
0) (for example the minimizer in the dual problem (3.7)), define x∗ := m(Ω).

Then, since E � x′′ + X ′′ with x′′ ∈ I and X ′′ ∈ C, one has

u∗
E(ǫx∗) = vE(ǫx∗) ≤ E

[
Ũ∗

(
ǫ
dmc

dP

)]
+ ǫm(E) ≤ E

[
U∗

(
ǫP

(
dmc

dP

))]
+ ǫ 〈x∗, x′′〉

≤ ζ(ǫ)E

[
U∗

(
P

(
dmc

dP

))+

+ 1

]
+ ǫ 〈x∗, x′′〉 = ζ(ǫ)E

[
Ũ∗

(
dmc

dP

)+

+ 1

]
+ ǫ 〈x∗, x′′〉 < ∞

for any ǫ ∈ (0, 1]. Hence ǫx∗ ∈ dom(u∗
E). Taking the limit as ǫ → 0 shows that 0 ∈ cl(dom(u∗

E)) and
hence uE is asymptotically satiable by Proposition 2.1. The proof for U follows the same lines but in
an easier way, by directly using the growth condition and the characterization of Proposition 2.1 as in
[CO10, Corollary 3.7]. �

One might look for sufficient conditions to check that the growth condition (3.11) actually holds. In
[CO10] the notion of reasonable asymptotic elasticity of U is introduced in order to ensure the growth
condition in the case of multivariate utility functions which are multivariate risk-averse and bounded
from below. If U is bounded from above then (3.11) trivially holds with ζ(ǫ) := supx∗∈Rd

+
U∗(x∗) =

U∗(0) = supx∈Rd U(x) < ∞. It is also satisfied if the quantity −〈∇U∗(ǫx∗), x∗〉 is bounded from above
in x∗ (as in the case of the sum of logarithms, a utility function which is neither bounded from above
nor from below).

Remark 3.5 Some papers dealing with optimal investment assume that the agent liquidates his assets
at the terminal date to one (ore more) reference assets. As in [CO10], it is possible to show that the
problem treated here is essentially equivalent to the investment problem with final liquidation, provided
that U is upper semi-continuous. In particular we have that

u(E) = sup
W∈A0

T−

E
[
Ū(W + E)

]
(3.12)

where
Ū(W ) := sup

{
U(ξ) : ξ ∈ R

d
+, (ξ, 0) − W ∈ −KT

}
, W ∈ L0(KT ,FT−) (3.13)

and 0 denotes the zero vector in R
D−d. The proof follows the same lines as [CO10], Proposition 4.3

with minor modifications.
If E ∈ O ∩ L∞ (which ensures the existence of a solution in the primal problem) then we can argue as

in [CO10, Proposition 4.4] to conclude that the supremum in (3.12) is attained at some Ŵ ∈ A0
T− and

that (ξ̂(Ŵ + E), 0) = X̂ + E a.s., where ξ̂(Ŵ + E) is the maximizer in (3.13).
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Remark 3.6 If d = 1 our optimization problem is similar to that treated in [Bou02]. In that paper,
however, the utility function is defined on the whole real line, which permits to avoid recurring to singular
measures. In a sense, we generalize their results in that we do not require the underlying asset processes
to be continuous, nor the transaction costs to be constant (we work in the framework set out in [CS06]
which is much more general). Moreover, we allow for a liquidation to many assets, which forces us to
introduce multivariate utility functions. Finally, many of our results (e.g. the duality characterization)
do not require the boundedness of the endowment which is instead assumed in [Bou02].

4 Utility indifference pricing

In this section we will examine some applications of the above results to the pricing of contingent claims
in an incomplete market. The analysis that follows is motivated by the fast growing interest in new
pricing paradigms (alternative to replication) in the context of incomplete financial markets. We adopt
some of the techniques used in [OZ09], where the authors studied a similar investment problem but in
a framework of frictionless financial markets and with univariate utility functions (defined on the whole
real line).
We start by proving some continuity properties of the value function.

Lemma 4.1 (i) If (En)n∈N is a sequence of endowments in O and such that

sup
m∈D∩dom(U∗

0
)

m(En − E) → 0 and inf
m∈D∩dom(U∗

0
)
m(En − E) → 0

as n → ∞ with E ∈ O, then u(En) → u(E).

(ii) If U is lower semi-continuous then u is as well on O equipped with the topology of convergence in
probability.

(iii) If (xn + E)n∈N ∈ O and (xn)n∈N is a sequence in R
D such that xn → x and a � xn � b for some

a, b ∈ R
D, then x + E ∈ O and

u(E + x) = lim
n

u(E + xn).

(iv) If (En)n∈N is a sequence of endowments in O∩L∞(RD) which uniformly satisfy equation (3.1) (in
the sense that the upper and lower bounds do not depend on n) and such that En → E in L∞(RD)
then we have

u(E) = lim
n

u(En).

Proof. (i) We have

u(En) − u(E) = inf
m∈D∩dom(U∗

0
)

{
E

[
Ũ∗

(
dmc

dP

)]
+ m(En)

}

− inf
m∈D∩dom(U∗

0
)

{
E

[
Ũ∗

(
dmc

dP

)]
+ m(E)

}

≤ sup
m∈D∩dom(U∗

0
)

m(En − E)

but also

u(En) − u(E) ≥ inf
m∈D∩dom(U∗

0
)
m(En − E)

hence |u(En) − u(E)| → 0 as n → ∞.
(ii) Let (En)n∈N be a sequence of endowments in O such that En → E in probability (E ∈ O). Then a
subsequence (that we still call in the same way) converges a.s. and we have, by semi-continuity of U
and Fatou’s lemma

u(lim inf
n

En) = sup
X∈A0

T

E

[
Ũ(X + lim inf

n
En)
]
≤ sup

X∈A0
T

E

[
lim inf

n
Ũ(X + En)

]

≤ sup
X∈A0

T

lim inf
n

E

[
Ũ(X + En)

]
≤ lim inf

n
sup

X∈A0
T

E

[
Ũ(X + En)

]
= lim inf

n
u(En)
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which implies the claim.
(iii) Let (xn +E)n∈N ∈ O with (xn)n∈N a sequence in R

D such that xn → x and a � xn � b for some
a, b ∈ R

D, then x + E ∈ O (since −A0
T ∩ R

D is closed) and we have

u(E + x) = inf
m∈D∩dom(U∗

0
)

{
E

[
Ũ∗

(
dmc

dP

)]
+ m(E) + m(lim sup

n
xn)

}

= inf
m∈D∩dom(U∗

0
)

{
E

[
Ũ∗

(
dmc

dP

)]
+ m(E) + lim sup

n
m(xn)

}

≥ lim sup
n

inf
m∈D∩dom(U∗

0
)

{
E

[
Ũ∗

(
dmc

dP

)]
+ m(E + xn)

}

= lim sup
n

u(E + xn)

hence u is continuous along such sequences.
(iv) Let (En)n∈N be a sequence of endowments in O∩L∞(RD) which uniformly satisfy equation (3.1)

and such that En → E in L∞(RD). Thus, we have

u(E) = inf
m∈D∩dom(U∗

0
)

{
E

[
Ũ∗

(
dmc

dP

)]
+ m(lim

n
En)

}

= inf
m∈D∩dom(U∗

0
)

{
E

[
Ũ∗

(
dmc

dP

)]
+ lim

n
m(En)

}

≥ lim sup
n

inf
m∈D∩dom(U∗

0
)

{
E

[
Ũ∗

(
dmc

dP

)]
+ m(En)

}

= lim sup
n

u(En)

since En → E in σ(L∞(RD),ba(RD)). Hence u is continuous also along these sequences as well. �

For j = 1, ..., d define

mj(X) :=

D∑

i=1

∫

Ω

Xi

dmi

mj(Ω)

and

mj(X) := inf
m∈D∩dom(U∗

0
)

{
D∑

i=1

∫

Ω

Xi

dmi

mj(Ω)

}

For B ∈ L0(RD
+) denote uE(B) := u(E +B) (sometimes we will write uE instead of u(E)). The following

lemma will be useful for the characterization of utility indifference prices, which will be introduced
immediately after.

Lemma 4.2 If E ∈ O and E + B − ejm̂j(B) ∈ O then

uE (B − ejm̂j(B)) ≤ uE ≤ uE

(
B − ejmj(B)

)

for all j = 1, ..., d.

Proof. Remark first that the conditions above imply also that E + B − ejmj(B) ∈ O. Using the duality
characterization in Theorem 3.1 together with the definitions of mj and mj yields

uE

(
B − ejmj(B)

)
=

= inf
m∈D∩dom(U∗

0
)

{
E

[
Ũ∗

(
dmc

dP

)]
+ m(E) + m

(
B − ejmj(B)

)}

≥ inf
m∈D∩dom(U∗

0
)

{
E

[
Ũ∗

(
dmc

dP

)]
+ m(E)

}
+ inf

m∈D∩dom(U∗

0
)

{
m
(
B − ejmj(B)

)}

= inf
m∈D∩dom(U∗

0
)

{
E

[
Ũ∗

(
dmc

dP

)]
+ m(E)

}
+ inf

m∈D∩dom(U∗

0
)

{(
D∑

i=1

∫

Ω

Bi

dmi

mj(Ω)
− mj(B)

)
mj(Ω)

}

= vE + 0 = uE .
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On the other hand

uE (B − ejm̂j(B)) =

= inf
m∈D∩dom(U∗

0
)

{
E

[
Ũ∗

(
dmc

dP

)]
+ m(E) + m (B − ejm̂j(B))

}

≤ E

[
Ũ∗

(
dm̂c

dP

)]
+ m̂(E) + m̂ (B − ejm̂j(B)) = E

[
Ũ∗

(
dm̂c

dP

)]
+ m̂(E) + 0 = uE .

which yields the other inequality. �

Definition 4.1 For j = 1, . . . , d the utility indifference (bid) price (UIP) pj(B) = pj(B;U, E) ∈ R for
the contingent claim B (expressed in units of asset j) is implicitly defined as the solution to the equation

u(E + B − ejpj) = u(E) (4.1)

In the next proposition we show that the definition of UIP is well-posed, i.e. pj(B) exists unique, and
that it satisfies in particular the properties of cash-invariance, monotonicity and convexity characterizing
a convex risk measure defined on vector-valued random variables (compare [BR06, JMT, HHR10]).

Proposition 4.1 Let j = 1, ..., d. Under the assumptions of Lemma 4.2 there exists a unique solution
to (4.1). The UIP pj(B) is therefore well defined and it verifies the following properties:

(i) mj(B) ≤ pj(B) ≤ m̂j(B);

(ii) if B ∈ A0
T then pj(B) ≤ 0 for any j = 1, . . . , d;

(iii) for c ∈ R we have pj(B + ejc) = pj(B) + c;

(iv) if B � C then pj(B) ≤ pj(C) for any j = 1, . . . , d;

(v) given contingent claims B1, B2 and λ ∈ [0, 1]

pj(λB1 + (1 − λ)B2) ≥ λpj(B1) + (1 − λ)pj(B2)

for any j = 1, . . . , d;

(vi) the utility indifference price can be expressed as

pj(B) = inf
m∈Dj(1)∩dom(U∗

0
)
{mj(B) + αj(m)}

where
Dj(k) := {m ∈ D : mj(Ω) = k}

αj(m) := inf
k>0

1

k

{
E

[
Ũ∗

(
dmk,c

dP

)]
+ mk(E) − vE

}

and mk is such that mk
i = mi if i 6= j and mk

j = kmj;

(vii) if (Bn)n∈N is a sequence of contingent claims such that

inf
m∈Dj(1)∩dom(U∗

0
)
mj(Bn − B) → 0 and sup

m∈Dj(1)∩dom(U∗

0
)

mj(Bn − B) → 0

then pj(Bn) → pj(B).

Proof. Remark first that if E1 belongs to O and E2 := E1 + x with x ∈ R
D
+ and xj > 0 for some j ≤ d,

then u(E2) > u(E1). Indeed we have

u(E1) = E

[
Ũ∗

(
dm̂c

1

dP

)]
+ m̂1(E1) ≤ E

[
Ũ∗

(
dm̂c

2

dP

)]
+ m̂2(E2 − x)

< E

[
Ũ∗

(
dm̂c

2

dP

)]
+ m̂2(E2) = u(E2)

(4.2)
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where m̂1 (resp. m̂2) is the minimizer in the dual problem with endowment E1 (resp. E2).
Existence and uniqueness follow from Lemma 4.1(iii) and the above considerations. Property (i) is
clear from Lemma 4.2. Property (ii) follows from the definition of the primal problem by noting that
X + B ∈ A0

T if X, B ∈ A0
T . In particular we have u(E + B) ≤ u(E) = u(E + B − ejpj) which implies

the claim. Property (iii) is straightforward from the definition of UIP and (iv) follows by monotonicity
of uE(·).
(v) By concavity of uE(·)

uE(λB1+(1 − λ)B2 − ejλpj(B1) − ej(1 − λ)pj(B2))

≥ λuE(B1 − ejpj(B1)) + (1 − λ)uE(B2 − ejpj(B2)) = uE

= uE(λB1 + (1 − λ)B2 − ejpj(λB1 + (1 − λ)B2))

by definition of UIP. The claim follows by monotonicity of uE(·).
(vi) By monotonicity of uE(·) and Lemma 4.1(iii), we have

pj(B) = inf{p : uE(B − ejp) < vE}

= inf

{
p : inf

m∈D∩dom(U∗

0
)

{
E

[
Ũ∗

(
dmc

dP

)]
+ m(E) + m(B) − pmj(Ω)

}
< vE

}

= inf

{
p : inf

m∈Dj(1)∩dom(U∗

0
)
inf
k>0

{
E

[
Ũ∗

(
dmk,c

dP

)]
+ mk(E) + kmj(B) − vE − kp

}
< 0

}

= inf

{
p : inf

m∈Dj(1)∩dom(U∗

0
)
mj(B) + inf

k>0

1

k

{
E

[
Ũ∗

(
dmk,c

dP

)]
+ mk(E) − vE

}
< p

}

= inf
m∈Dj(1)∩dom(U∗

0
)

{
mj(B) + inf

k>0

1

k

{
E

[
Ũ∗

(
dmk,c

dP

)]
+ mk(E) − vE

}}

= inf
m∈Dj(1)∩dom(U∗

0
)
{mj(B) + αj(m)}

where we recall that
Dj(k) := {m ∈ D : mj(Ω) = k}

αj(m) := inf
k>0

1

k

{
E

[
Ũ∗

(
dmk,c

dP

)]
+ mk(E) − vE

}

and mk is such that mk
i = mi if i 6= j and mk

j = kmj .
(vii) Remark that

inf
m∈Dj(1)∩dom(U∗

0
)
mj(Bn − B) = inf

m∈Dj(1)∩dom(U∗

0
)
[(mj(Bn) + αj(m)) − (mj(B) + αj(m))]

≤ inf
m∈Dj(1)∩dom(U∗

0
)
[mj(Bn) + αj(m)] − inf

m∈Dj(1)∩dom(U∗

0
)
[mj(B) + αj(m)]

= pj(Bn) − pj(B) ≤ sup
m∈Dj(1)∩dom(U∗

0
)

mj(Bn − B)

which implies the claim. �

Definition 4.2 The average utility indifferent purchase price for β units of the contingent claim B (in
terms of asset j) is defined by

pβ
j (B) :=

pj(βB)

β
.

In the next proposition we present some properties of the function β 7→ pβ
j (B).

Proposition 4.2 If E ∈ O and E + β(B − ejm̂j(B)) ∈ O for all β > 0 then the function β 7→ pβ
j (B)

verifies the following properties:

(i) It is non-increasing in β;

(ii) mj(B) ≤ pβ
j (B) ≤ m̂j(B) for all β > 0;

(iii) limβ→∞ pβ
j (B) = mj(B);
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Proof. Remark first that the conditions of Lemma 4.2 are automatically satisfied by βB for all β > 0.
(i) Take 0 < β1 ≤ β2. Then by concavity (Proposition 4.1 (v)) we have

pβ1

j (B) :=
1

β1
pj

(
β1

β2
β2B

)
≥

1

β2
pj(β2B) +

(
1

β1
−

1

β2

)
pj(0) =

1

β2
pj(β2B) = pβ2

j (B).

(ii) It is clear from Proposition 4.1.

(iii) Suppose for a contradiction that there exists m̃ ∈ D ∩ dom(U∗
0) such that m̃j(B) < limβ→∞ pβ

j (B).
Then for any β > 0

uE = uE(βB − ejpj(βB)) = inf
m∈D∩dom(U∗

0
)

{
E

[
Ũ∗

(
dmc

dP

)]
+ m(E) + βm

(
B − ejp

β
j (B)

)}

≤ E

[
Ũ∗

(
dm̃c

dP

)]
+ m̃(E) + βm̃j(Ω)

[
m̃j(B) − pβ

j (B)
]

and we get the desired contradiction by sending β to infinity. �

Let us look for an interpretation of the previous result. Assume the agent has purchased the claim
B paying p units of asset j and now wants to eliminate all the risk arising from this position by super-
hedging the claim −B. By Theorem 2.1 he will be able to reach his objective if and only if

inf
Z∈Zs

E

[〈
B,

ZT

Zj
0

〉]
≥ p,

hence the highest price he will accept to pay for the claim B (in units of asset j) by remaining sure that
he will run no risks at maturity is

p̄j(B) := inf
Z∈Zs

E

[〈
B,

ZT

Zj
0

〉]
.

Now suppose that B is bounded, which is the case for most common claims like call and put options
(recall that we are working with units and not with prices). Thus (by definition of p̄j(B) and Theorem

2.1) there exists X ∈ C such that −ej p̄j(B) + X � −B. Thus for any m ∈ D we have p̄j(B) ≤ m(B)
mj(Ω) ,

implying p̄j(B) ≤ mj(B).
It is natural to ask under which condition we also have p̄j(B) ≥ mj(B), that would imply p̄j(B) = mj(B)
for bounded B. By Remark 3.3 we know that Zs ⊆ D, hence it would be easy to get the desired inequality
if

mj(B) = inf
m∈D∩dom(U∗

0
)

m(B)

mj(Ω)
= inf

m∈D

m(B)

mj(Ω)
.

This condition on B (which looks hard to verify in practice) is, for example, automatically satisfied if the
utility function U is bounded from above (which implies that 0 ∈ dom(U∗

0), hence dom(U∗
0) = ba(RD

+)
by Lemma 2.1 and Proposition 2.1).
Therefore if B is in L∞(RD

+) and U is bounded from above, point (iii) of Proposition 4.2 tells us that
the average price (in terms of any of the first d assets) a risk averse agent is ready to pay to buy more
and more units of a contingent claim and get always the same utility approaches a price that allows him
to trade as to bear zero risk at maturity. If we only have boundedness of B, then, in general, the agent
might keep some risk also in the limiting case.

Remark 4.1 The definition of UIP can be further generalized to account for the case where we seek a
“price” in terms of more than one asset. Let n ≤ d and denote p̄ := (p, 0) ∈ R

D where p ∈ R
n and 0 is

now the zero vector in R
D−n. One can define p(B) ∈ R

n, the UIP for B expressed in terms of the first
n assets, as a solution to uE+B−p̄ = uE , with E ∈ O and E + B − p̄ ∈ O. The subspace of R

n of the
solutions to the previous inequality is closed if we only consider endowments in L∞(RD) (by Lemma
4.1(iv)). A more thorough treatment of such vector UIP’s is postponed to future research.
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[OZ09] M. P. Owen and G. Žitković, Optimal investment with an unbounded random endowment
and utility-based pricing. Math. Finance 19 (2009), 129–159.

[RR83] K. P. S. B. Rao and M. B. Rao, Theory of charges: a study of finitely additive measures,
Academic Press, London, 1983.

[Roc72] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, 1972.

[S04] W. Schachermayer, The Fundamental Theorem of Asset Pricing under Proportional Trans-
action Costs in Finite Discrete Time, Mathematical Finance 14 (2004), No. 1, 19-48.

[SS94] S. E. Shreve and H. M. Soner Optimal investment and consumption with transaction costs,
Annals of Applied Probability 4 (1994), 609–692.
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